首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292260篇
  免费   22806篇
  国内免费   11282篇
电工技术   15776篇
技术理论   31篇
综合类   18042篇
化学工业   49628篇
金属工艺   17366篇
机械仪表   18945篇
建筑科学   23185篇
矿业工程   9607篇
能源动力   8099篇
轻工业   17658篇
水利工程   4902篇
石油天然气   20253篇
武器工业   2360篇
无线电   31935篇
一般工业技术   34663篇
冶金工业   15025篇
原子能技术   2922篇
自动化技术   35951篇
  2024年   502篇
  2023年   4581篇
  2022年   6807篇
  2021年   11293篇
  2020年   8731篇
  2019年   7369篇
  2018年   8374篇
  2017年   9447篇
  2016年   8272篇
  2015年   11605篇
  2014年   14342篇
  2013年   17019篇
  2012年   18432篇
  2011年   19978篇
  2010年   17344篇
  2009年   16427篇
  2008年   15883篇
  2007年   15501篇
  2006年   16309篇
  2005年   14398篇
  2004年   9252篇
  2003年   8029篇
  2002年   7438篇
  2001年   6569篇
  2000年   7098篇
  1999年   8434篇
  1998年   6764篇
  1997年   5751篇
  1996年   5400篇
  1995年   4488篇
  1994年   3734篇
  1993年   2614篇
  1992年   2120篇
  1991年   1581篇
  1990年   1146篇
  1989年   917篇
  1988年   742篇
  1987年   487篇
  1986年   358篇
  1985年   235篇
  1984年   162篇
  1983年   105篇
  1982年   127篇
  1981年   83篇
  1980年   70篇
  1979年   24篇
  1978年   2篇
  1965年   2篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
The waterline corrosion behaviors of carbon steel partially immersed in a 3.5 wt% NaCl solution were investigated using the wire beam electrode technique, and the effects of corrosion products on the processes of waterline corrosion were analyzed. The results demonstrated that the initial stage and development stage of waterline corrosion were mainly controlled by the concentration and diffusion of dissolved oxygen, respectively, and the deceleration stage of waterline corrosion was mainly affected by corrosion products. The main component of the yellow corrosion products was γ-FeOOH, and γ-FeOOH that exhibited a high reduction reactivity could be involved in the cathodic reaction. The black corrosion products were mainly composed of Fe3O4 with strong thermodynamic stability and the processes of dissolved oxygen diffusion and ion transports were obviously affected due to the continuous accumulation of Fe3O4 on the surface of the electrodes. Polarity reversals were observed on the single electrodes below the waterline, but the reasons for the phenomena were different from each other.  相似文献   
102.
HfC nanowires modified carbon fiber cloth laminated carbon/carbon (HfCnw-C/C) composites were fabricated by in situ growth of HfC nanowires on carbon cloths via catalytic CVD, followed with lamination of the cloths and densification by pyrolytic carbon (PyC). Morphologies, thermal conductivity, coefficient of thermal expansion (CTE), and ablation resistance of the composites were investigated. Due to the loading of HfC nanowires, the matrix PyC with low texture was obtained; the thermal conductivity of the composites in the Z direction was enhanced from 100℃ to 2500℃; CTE along the X–Y direction also decreased in the range of 2060 ℃ – 2500 ℃, which reaches the maximum of 24 % at 2500℃. Moreover, the 20s-ablation-resistance of HfCnw-C/C composites exhibits mass and linear ablation rates of 5.3 mg/s and 21.0 μm/s, which are 40 % and 37 % lower than those of pure C/C composites, respectively. Our work shows laminated HfCnw-C/C composites are a promising candidate for high-temperature applications.  相似文献   
103.
Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8, 0.7) ceramics were prepared by solid state reaction sintering. The sintered Sr1.0(Zr0.9Y0.05Yb0.05)O2.95 is a single-phase solid solution while the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9?0.7) are composites, and a significant grain growth inhibition is observed in the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9). Rare-earth elements distribution in the bulk materials indicates that Yb and Y preferentially substitute Zr-sites in SrZrO3, and the highest solubility of RE2O3 in pure SrZrO3 is ~0.8 mol%. The sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x have high thermal expansion coefficients up to ~11.0×10?6 K-1 (1200°C). Sr0.8(Zr0.9Y0.05Yb0.05)O2.75 has the lowest thermal conductivity of 1.38 W·m-1·K-1 at 800°C. Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) show no phase transition from 600 to 1400°C, whereas Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9, 0.8) have excellent high-temperature phase stability over the whole investigated temperature range. Therefore, Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) are considered as promising TBCs materials that might be operated at higher temperatures compared to YSZ.  相似文献   
104.
AgNbO3 lead free AFE ceramics are considered as one of the promising alternatives to energy storage applications. In the majority of studies concerning the preparation of AgNbO3 AFE ceramics, an oxygen atmosphere is required to achieve high performance, increasing the complexity of the fabrication process. Herein, a facile approach to preparing AgNbO3 ceramics in the ambient air was reported, in which the AgNbO3 ultrafine powder with stable perovskite structure was synthesized by hydrothermal method instead of the conventional ball milling process, leading to a lower temperature of phase formation and thus smaller grain size. The resulting ceramics sintered at 940 °C displayed high breakdown strength (216 kV/cm) and a recoverable energy density of 3.26 J/cm3 with efficiency of 53.5 %. Also, the high thermal stability of recoverable energy density (with minimal variation of ≤20 %) and efficiency (≤ 10 %) over 30–150℃, enables AgNbO3 ceramics achieved to be a promising candidate for energy storage applications.  相似文献   
105.
建立了一种快速、灵敏测定药物中盐酸美西律的双波长分光光度法。在弱碱性溶液中,虎红与盐酸美西律反应生成离子缔合物,使溶液发生褪色现象,光谱曲线上呈现2个较强的负吸收峰,它们分别位于472和560 nm,在此2个波长处,盐酸美西律的线性范围为0.04~2.6 mg/L,表观摩尔吸光系数(κ)分别为5.87×104(472 nm)和3.59×104 L/(mol·cm)(560 nm),检出限为0.033(472 nm)和0.035 mg/L(560 nm)。用双波长法测定时,其表观摩尔吸光系数(κ)达9.46×104 L/(mol·cm),检出限为0.017 mg/L。双波长法用于盐酸美西律药片测定,加标回收率为97.7%~103%,相对标准偏差(RSD)为2.2%~2.6%。  相似文献   
106.
Highly transparent X2O3 sesquioxide ceramics were obtained from a solid solution of five different oxides (Lu2O3, Y2O3, Yb2O3, Gd2O3, and Dy2O3), mixed in an equal molar ratio according to the principle of high-entropy. The fabricated (Lu, Y, Yb, Gd, Dy)2O3 ceramics achieved 99.97 % of the relative density and exhibited a high degree of optical transparency with the in-line transmittance of almost 80 % in the visible wavelength range. Emissions of Gd3+ (6PJ8S7/2 at 312 nm), Dy3+ (4F9/26H15/2 at 492 nm and 4F9/26H13/2 at 572 nm), and Yb3+ (2F5/22F7/2 at 1031 nm) suggested a potential application of the high-entropy ceramics as multi-wavelength emission phosphor transparent ceramics. High-entropy ceramics also exhibited lower specific heat and thermal conductivity compared to single-element sesquioxide ceramics. This work demonstrated that highly transparent oxide ceramics, with complex chemical compositions and good optical properties, could be obtained using the high-entropy principle.  相似文献   
107.
Organic solar cells (OSCs) have recently reached a remarkably high efficiency and become a promising technology for commercial application. However, OSCs with top efficiency are mostly processed by halogenated solvents and with additives that are not environmentally friendly, which hinders large-scale manufacture. In this study, high-performance tandem OSCs, based on polymer donors and two small-molecule acceptors with different bandgaps, are fabricated by solution processing with non-halogenated solvents without additive. Importantly, the two active layers developed from non-halogenated solvents show better phase segregation and charge transport properties, leading to superior performance than halogenated ones. As a result, a tandem OSC with high efficiency of up to 16.67% is obtained, showing unique advantages in future massive production.  相似文献   
108.
The development of the Internet of things has prompted an exponential increase in the demand for flexible, wearable devices, thereby posing new challenges to their integration and conformalization. Additive manufacturing facilitates the fabrication of complex parts via a single integrated process. Herein, the development of a multinozzle, multimaterial printing device is reported. This device accommodates the various characteristics of printing materials, ensures high-capacity printing, and can accommodate a wide range of material viscosities from 0 to 1000 Cp. Complete capacitors, inclusive of the current collector, electrode, and electrolyte, can be printed without repeated clamping to complete the preheating, printing, and sintering processes. This method addresses the poor stability issue associated with printed electrode materials. Furthermore, after the intercalation of LiFePO4 with Na ions, X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the Na ions permeate the interlayer structure of LiFePO4, enhancing the ion migration channels by increasing the ion transmission rate. A current rate of 2.5 mAh ensures >2000 charge/discharge cycles, while retaining a charge/discharge efficiency of 96% and a discharge capacity of 91.3 mAh g−1. This manufacturing process can provide conformal power modules for a diverse range of portable devices with various shapes, improving space utilization.  相似文献   
109.
Recent studies have demonstrated that dihydrophenazine (Pz) with high redox-reversibility and high theoretical capacity is an attractive building block to construct p-type polymer cathodes for dual-ion batteries. However, most reported Pz-based polymer cathodes to date still suffer from low redox activity, slow kinetics, and short cycling life. Herein, a donor–acceptor (D–A) Pz-based conjugated microporous polymer (TzPz) cathode is constructed by integrating the electron-donating Pz unit and the electron-withdrawing 2,4,6-triphenyl-1,3,5-triazine (Tz) unit into a polymer chain. The D–A type structure enhances the polymer conjugation degree and decreases the band gap of TzPz, facilitating electron transportation along the polymer skeletons. Therefore the TzPz cathode for dual-ion battery shows a high reversible capacity of 192 mAh g−1 at 0.2 A g−1 with excellent rate performance (108 mAh g−1 at 30 A g−1), which is much higher than that of its counterpart polymer BzPz produced from 1,3,5-triphenylbenzene (Bz) and Pz (148 and 44 mAh g−1 at 0.2 and 10 A g−1, respectively). More importantly, the TzPz cathode also shows a long and stable cyclability of more than 10 000 cycles. These results demonstrate that the D–A structural design is an efficient strategy for developing high-performance polymer cathodes for dual-ion batteries.  相似文献   
110.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号